
1

Attacking AUTOSAR using 

Software and Hardware Attacks

Pascal Nasahl

Graz University of Technology

Niek Timmers

Riscure



2

Introduction



3

Introduction

• Niek Timmers

• Principal Security Analyst @ Riscure



4

Introduction

• Niek Timmers

• Principal Security Analyst @ Riscure

• Analyzing and testing of embedded technologies



5

Introduction

• Niek Timmers

• Principal Security Analyst @ Riscure

• Analyzing and testing of embedded technologies

• Research

• Automotive, secure boot, fault injection, etc.

• More at niektimmers.com and riscure.com

http://www.niektimmers.com/
https://www.riscure.com/


6

Introduction

• Niek Timmers

• Principal Security Analyst @ Riscure

• Analyzing and testing of embedded technologies

• Research

• Automotive, secure boot, fault injection, etc.

• More at niektimmers.com and riscure.com

Please visit Riscure’s booth for more information! 

http://www.niektimmers.com/
https://www.riscure.com/


7

Today’s Agenda



8

Today’s Agenda

•Brief introduction to AUTOSAR Classic



9

Today’s Agenda

•Brief introduction to AUTOSAR Classic

•Attacks on AUTOSAR



10

Today’s Agenda

•Brief introduction to AUTOSAR Classic

•Attacks on AUTOSAR

•Case study



11

Today’s Agenda

•Brief introduction to AUTOSAR Classic

•Attacks on AUTOSAR

•Case study

•Wrap-up



12

Today’s Agenda

•Brief introduction to AUTOSAR Classic

•Attacks on AUTOSAR

•Case study

•Wrap-up

•Q&A



13

AUTOSAR Classic



14

AUTOSAR Classic

• Layered software 

architecture



15

AUTOSAR Classic

• Layered software 

architecture

• Most layers are independent

from the Microcontroller



16

AUTOSAR Classic

• Layered software 

architecture

• Most layers are independent

from the Microcontroller

• Improve software reusability



17

AUTOSAR Classic

Complex

Drivers

Microcontroller

Runtime Environment

Microcontroller 

Drivers

Memory 

Drivers

I/O Drivers

I/O Hardware 

Abstraction

Memory 

Hardware 

Abstraction

Memory 

Services

System Services

Onboard 

Device 

Abstraction

Wireless 

Communication 

Drivers

Communication 

Hardware 

Abstraction

Off-board 

Communication 

Services

Application Layer

Crypto Drivers

Crypto 

Hardware 

Abstraction

Crypto 

Services

Communication 

Drivers

Communication 

Services

Wireless 

Communication 

HW Abstraction



18

AUTOSAR Classic

Complex

Drivers

Microcontroller

Runtime Environment

Microcontroller 

Drivers

Memory 

Drivers

I/O Drivers

I/O Hardware 

Abstraction

Memory 

Hardware 

Abstraction

Memory 

Services

System Services

Onboard 

Device 

Abstraction

Wireless 

Communication 

Drivers

Communication 

Hardware 

Abstraction

Off-board 

Communication 

Services

Application Layer

Crypto Drivers

Crypto 

Hardware 

Abstraction

Crypto 

Services

Communication 

Drivers

Communication 

Services

Wireless 

Communication 

HW Abstraction

Vulnerabilities can be introduced in any layer!



19

Summary of AUTOSAR



20

Summary of AUTOSAR

•Complex software; will contain bugs/vulnerabilities



21

Summary of AUTOSAR

•Complex software; will contain bugs/vulnerabilities

•Made by different vendors / developers
• Do you trust your suppliers?



22

Summary of AUTOSAR

•Complex software; will contain bugs/vulnerabilities

•Made by different vendors / developers
• Do you trust your suppliers?

•Mature code due to safety requirements
• i.e. MISRA-C



23

Summary of AUTOSAR

•Complex software; will contain bugs/vulnerabilities

•Made by different vendors / developers
• Do you trust your suppliers?

•Mature code due to safety requirements
• i.e. MISRA-C

Mature! But not guaranteed secure...



24

What can go wrong?



25

Potential MCAL vulnerabilities



26

Potential MCAL vulnerabilities



27

Potential MCAL vulnerabilities

Who verifies your MCAL for vulnerabilities?



28

What about MISRA-C?!



29

What about MISRA-C?!



30

What about MISRA-C?!

You cannot conform to directives automagically…



31

What else?



32

Vulnerabilities in complex software



33

Vulnerabilities in complex software



34

Vulnerabilities in complex software

Who verifies your communication stack?



35

Mitigating software vulnerabilities



36

Mitigating software vulnerabilities

•Minimize the low hanging fruit
• Secure coding standard, code checkers, ... 



37

Mitigating software vulnerabilities

•Minimize the low hanging fruit
• Secure coding standard, code checkers, ... 

•Find vulnerabilities yourself before attackers do
• Continuous security code reviews, ...



38

Mitigating software vulnerabilities

•Minimize the low hanging fruit
• Secure coding standard, code checkers, ... 

•Find vulnerabilities yourself before attackers do
• Continuous security code reviews, ...

•Make it harder to exploit software vulnerabilities
• Software exploitation mitigations, ...



39

Sufficiently complex software 

has vulnerabilities.



40

Finding them is not always trivial...

Sufficiently complex software 

has vulnerabilities.



41

What if an attacker cannot find any 

or they are too difficult to exploit?

Finding them is not always trivial...

Sufficiently complex software 

has vulnerabilities.



42

Hardware attacks!?



43

Hardware attacks!?

•Attacker needs physcial access the ECU



44

Hardware attacks!?

•Attacker needs physcial access the ECU

•Attacker often needs to open the ECU



45

Hardware attacks!?

•Attacker needs physcial access the ECU

•Attacker often needs to open the ECU

•Different types of HW attacks:

•E.g. PCB-level, Fault injection, Side Channels, etc.



46

Hardware attacks!?

•Attacker needs physcial access the ECU

•Attacker often needs to open the ECU

•Different types of HW attacks:

•E.g. PCB-level, Fault injection, Side Channels, etc.

•Often a stepping stone for more scalable attacks



47

Case study: FI on AUTOSAR

“Using FI to take control of an AUTOSAR-based ECU.”



48

Case study: FI on AUTOSAR

• Demonstration ECU implemented using:
• STM32F4 development board

• Arctic Core for AUTOSAR v3.1

“Using FI to take control of an AUTOSAR-based ECU.”



49

Case study: FI on AUTOSAR

• Demonstration ECU implemented using:
• STM32F4 development board

• Arctic Core for AUTOSAR v3.1

• Attacking using a previously described FI fault model

“Using FI to take control of an AUTOSAR-based ECU.”

https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf


50

Case study: FI on AUTOSAR

• Demonstration ECU implemented using:
• STM32F4 development board

• Arctic Core for AUTOSAR v3.1

• Attacking using a previously described FI fault model

“Using FI to take control of an AUTOSAR-based ECU.”

Fault Injection? Fault model?

https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf


51

Voltage Fault Injection
“Introducing faults into a chip in order to change its intented behavior.”



52

Voltage Fault Injection
“Introducing faults into a chip in order to change its intented behavior.”



53

Voltage Fault Injection
“Introducing faults into a chip in order to change its intented behavior.”



54

Voltage Fault Injection
“Introducing faults into a chip in order to change its intended behavior.”



55

Voltage Fault Injection
“Introducing faults into a chip in order to change its intented behavior.”



56

Fault Injection Setup



57

Fault Injection Setup



58

Fault Injection Setup



59

USB

Fault Injection Setup



60

USB

Fault Injection Setup

CAN



61

Voltage

USB

Fault Injection Setup

CAN



62

Voltage

USB

Reset

Fault Injection Setup

CAN



63

What can we do with fault injection?



64

Fault Injection Fault Model

“Instruction corruption.”



65

Fault Injection Fault Model

• Glitches can be used to modify instruction

“Instruction corruption.”



66

Fault Injection Fault Model

• Glitches can be used to modify instruction

• In other words, we can modify software

“Instruction corruption.”



67

Fault Injection Fault Model

• Glitches can be used to modify instruction

• In other words, we can modify software

• Fault injection breaks any software security model

“Instruction corruption.”



68

How can we use this to attack 

AUTOSAR-based ECUs?



69

Attacking AUTOSAR



70

Attacking AUTOSAR

•Our goal is to execute arbitrary code



71

Attacking AUTOSAR

•Our goal is to execute arbitrary code

•Our only entry into the device is the CAN bus



72

Attacking AUTOSAR

•Our goal is to execute arbitrary code

•Our only entry into the device is the CAN bus

•Of course, we have physical access…



73

AUTOSAR’s PDU Router



74

AUTOSAR’s PDU Router

1. CAN driver receives 8-byte CAN frame



75

AUTOSAR’s PDU Router

1. CAN driver receives 8-byte CAN frame

2. Frame passes the CAN interface



76

AUTOSAR’s PDU Router

1. CAN driver receives 8-byte CAN frame

2. Frame passes the CAN interface

3. Payload is reassembled by ISO-TP



77

AUTOSAR’s PDU Router

1. CAN driver receives 8-byte CAN frame

2. Frame passes the CAN interface

3. Payload is reassembled by ISO-TP

4. Payload is copied to COM or DCM



78

AUTOSAR’s PDU Router

1. CAN driver receives 8-byte CAN frame

2. Frame passes the CAN interface

3. Payload is reassembled by ISO-TP

4. Payload is copied to COM or DCM

5. COM or DCM handles the payload



79

Where do we attack?!



80

AUTOSAR’s PDU Router

1. CAN driver receives 8-byte CAN frame

2. Frame passes the CAN interface

3. Payload is reassembled by ISO-TP

4. Payload is copied to COM or DCM

5. COM or DCM handles the payload



81

Attacking AUTOSAR’s PDU router



82

Attacking AUTOSAR’s PDU router

• Step 1: Send an ISO-TP CAN message (< 4096 bytes)



83

Attacking AUTOSAR’s PDU router

• Step 1: Send an ISO-TP CAN message (< 4096 bytes)

Copy ‘Our task’ 

to ‘free memory’

Our 

task



84

Attacking AUTOSAR’s PDU router

• Step 1: Send an ISO-TP CAN message (< 4096 bytes)

Modify pointer of IDLE 

task to ‘free memory’

Copy ‘Our task’ 

to ‘free memory’

Our 

task



85

Attacking AUTOSAR’s PDU router

• Step 1: Send an ISO-TP CAN message (< 4096 bytes)

Modify pointer of IDLE 

task to ‘free memory’

Copy ‘Our task’ 

to ‘free memory’

Our 

task

Continue with 

current task



86

Attacking AUTOSAR’s PDU router

• Step 1: Send an ISO-TP CAN message (< 4096 bytes)

Modify pointer of IDLE 

task to ‘free memory’

Copy ‘Our task’ 

to ‘free memory’

Our 

task
Pointers pointing to the start of the payload

Continue with 

current task



87

Attacking AUTOSAR’s PDU router

• Step 1: Send an ISO-TP CAN message (< 4096 bytes)

• Step 2: We inject the glitch when the pointers are being copied

Modify pointer of IDLE 

task to ‘free memory’

Copy ‘Our task’ 

to ‘free memory’

Our 

task
Pointers pointing to the start of the payload

Continue with 

current task



88

Attacking AUTOSAR’s PDU router

• Step 1: Send an ISO-TP CAN message (< 4096 bytes)

• Step 2: We inject the glitch when the pointers are being copied

• Step 3: Successful glitches load a pointer into the PC register

Modify pointer of IDLE 

task to ‘free memory’

Copy ‘Our task’ 

to ‘free memory’

Our 

task
Pointers pointing to the start of the payload

Continue with 

current task



89

Attacking AUTOSAR’s PDU router

• Step 1: Send an ISO-TP CAN message (< 4096 bytes)

• Step 2: We inject the glitch when the pointers are being copied

• Step 3: Successful glitches load a pointer into the PC register

• Step 4: MCU will execute the ISO-TP message (blue blocks)

Modify pointer of IDLE 

task to ‘free memory’

Copy ‘Our task’ 

to ‘free memory’

Our 

task
Pointers pointing to the start of the payload

Continue with 

current task



90

Attacking AUTOSAR’s PDU router

• Step 1: Send an ISO-TP CAN message (< 4096 bytes)

• Step 2: We inject the glitch when the pointers are being copied

• Step 3: Successful glitches load a pointer into the PC register

• Step 4: MCU will execute the ISO-TP message (blue blocks)

• Step 5: Wait for IDLE task to be scheduled and execute our task

Modify pointer of IDLE 

task to ‘free memory’

Copy ‘Our task’ 

to ‘free memory’

Our 

task
Pointers pointing to the start of the payload

Continue with 

current task



91

Why does this work?



92

Attacking AUTOSAR’s PDU Router



93

Attacking AUTOSAR’s PDU Router

Disassembled 

memcpy()



94

Attacking AUTOSAR’s PDU Router

Disassembled 

memcpy()



95

Attacking AUTOSAR’s PDU Router

Disassembled 

memcpy()

We take control of the Program Counter (PC) during the copy!



96

We have our own task. Now what?!



97

Post Exploitation



98

Post Exploitation

•Extract information (secrets)



99

Post Exploitation

•Extract information (secrets)

•Analyze firmware dynamically



100

Post Exploitation

•Extract information (secrets)

•Analyze firmware dynamically

•Perform additional attacks (e.g. side channel attack) 



101

Post Exploitation

•Extract information (secrets)

•Analyze firmware dynamically

•Perform additional attacks (e.g. side channel attack) 

•Add (malicious) and/or change functionality



102

Is all hope lost?



103

Hardening AUTOSAR-based ECUs



104

Hardening AUTOSAR-based ECUs

•Adhere to (automotive) security guidelines/standards



105

Hardening AUTOSAR-based ECUs

•Adhere to (automotive) security guidelines/standards

•Make use of strong (hardware-based) security



106

Hardening AUTOSAR-based ECUs

•Adhere to (automotive) security guidelines/standards

•Make use of strong (hardware-based) security

•Minimize attack surface and increase attack complexity



107

Hardening AUTOSAR-based ECUs

•Adhere to (automotive) security guidelines/standards

•Make use of strong (hardware-based) security

•Minimize attack surface and increase attack complexity

•Consult internal/external embedded security experts



108

To wrap up…



109

Takeaways



110

Takeaways

•Devices (incl. AUTOSAR-based ECUs) will be hacked



111

Takeaways

•Devices (incl. AUTOSAR-based ECUs) will be hacked

•Not AUTOSAR’s fault!



112

Takeaways

•Devices (incl. AUTOSAR-based ECUs) will be hacked

•Not AUTOSAR’s fault!

•No (known) software vulnerabilities ≠ secure



113

Takeaways

•Devices (incl. AUTOSAR-based ECUs) will be hacked

•Not AUTOSAR’s fault!

•No (known) software vulnerabilities ≠ secure

•Hardware attacks are efficient and do scale



114

Thank you. Questions?

Niek Timmers

niek@riscure.com / @tieknimmers

mailto:niek@riscure.com


115

Challenge your security

Riscure B.V. 

Frontier Building, Delftechpark 49 

2628 XJ Delft 

The Netherlands 

Phone: +31 15 251 40 90 

inforequest@riscure.com

Riscure North America 

550 Kearny St., Suite 330

San Francisco, CA 94108 USA

Phone: +1 650 646 99 79 

inforequest@riscure.com

Riscure China

Room 2030-31, No. 989, Changle Road, Shanghai 200031

China

Phone: +86 21 5117 5435

inforcn@riscure.com

mailto:inforequest@riscure.com
mailto:inforequest@riscure.com
mailto:inforcn@riscure.com

