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Introduction

• Niek Timmers

• Principal Security Analyst @ Riscure

• Analyzing and testing of embedded technologies

• Research

• Automotive, secure boot, fault injection, etc.

• More at niektimmers.com and riscure.com

Please visit Riscure’s booth for more information! 

http://www.niektimmers.com/
https://www.riscure.com/
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Today’s Agenda

•Brief introduction to AUTOSAR Classic

•Attacks on AUTOSAR

•Case study

•Wrap-up

•Q&A
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AUTOSAR Classic

• Layered software 

architecture

• Most layers are independent

from the Microcontroller

• Improve software reusability
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Vulnerabilities can be introduced in any layer!
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Summary of AUTOSAR

•Complex software; will contain bugs/vulnerabilities

•Made by different vendors / developers
• Do you trust your suppliers?

•Mature code due to safety requirements
• i.e. MISRA-C

Mature! But not guaranteed secure...
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What can go wrong?
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Potential MCAL vulnerabilities

Who verifies your MCAL for vulnerabilities?
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What about MISRA-C?!

You cannot conform to directives automagically…
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What else?
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Vulnerabilities in complex software

Who verifies your communication stack?



35

Mitigating software vulnerabilities



36

Mitigating software vulnerabilities

•Minimize the low hanging fruit
• Secure coding standard, code checkers, ... 



37

Mitigating software vulnerabilities

•Minimize the low hanging fruit
• Secure coding standard, code checkers, ... 

•Find vulnerabilities yourself before attackers do
• Continuous security code reviews, ...



38

Mitigating software vulnerabilities

•Minimize the low hanging fruit
• Secure coding standard, code checkers, ... 

•Find vulnerabilities yourself before attackers do
• Continuous security code reviews, ...

•Make it harder to exploit software vulnerabilities
• Software exploitation mitigations, ...
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What if an attacker cannot find any 

or they are too difficult to exploit?

Finding them is not always trivial...

Sufficiently complex software 

has vulnerabilities.
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Hardware attacks!?

•Attacker needs physcial access the ECU

•Attacker often needs to open the ECU

•Different types of HW attacks:

•E.g. PCB-level, Fault injection, Side Channels, etc.

•Often a stepping stone for more scalable attacks
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Case study: FI on AUTOSAR

• Demonstration ECU implemented using:
• STM32F4 development board

• Arctic Core for AUTOSAR v3.1

• Attacking using a previously described FI fault model

“Using FI to take control of an AUTOSAR-based ECU.”

Fault Injection? Fault model?

https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf
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Voltage Fault Injection
“Introducing faults into a chip in order to change its intented behavior.”
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Voltage

USB

Reset

Fault Injection Setup

CAN
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What can we do with fault injection?
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Fault Injection Fault Model

• Glitches can be used to modify instruction

• In other words, we can modify software

• Fault injection breaks any software security model

“Instruction corruption.”
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Attacking AUTOSAR

•Our goal is to execute arbitrary code

•Our only entry into the device is the CAN bus

•Of course, we have physical access…
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1. CAN driver receives 8-byte CAN frame
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Where do we attack?!
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AUTOSAR’s PDU Router

1. CAN driver receives 8-byte CAN frame

2. Frame passes the CAN interface

3. Payload is reassembled by ISO-TP

4. Payload is copied to COM or DCM

5. COM or DCM handles the payload
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Attacking AUTOSAR’s PDU router

• Step 1: Send an ISO-TP CAN message (< 4096 bytes)

• Step 2: We inject the glitch when the pointers are being copied

• Step 3: Successful glitches load a pointer into the PC register

• Step 4: MCU will execute the ISO-TP message (blue blocks)

• Step 5: Wait for IDLE task to be scheduled and execute our task

Modify pointer of IDLE 

task to ‘free memory’

Copy ‘Our task’ 

to ‘free memory’

Our 

task
Pointers pointing to the start of the payload

Continue with 

current task
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Why does this work?
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Attacking AUTOSAR’s PDU Router

Disassembled 

memcpy()

We take control of the Program Counter (PC) during the copy!
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We have our own task. Now what?!
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Post Exploitation

•Extract information (secrets)

•Analyze firmware dynamically

•Perform additional attacks (e.g. side channel attack) 

•Add (malicious) and/or change functionality
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Is all hope lost?
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Hardening AUTOSAR-based ECUs

•Adhere to (automotive) security guidelines/standards

•Make use of strong (hardware-based) security

•Minimize attack surface and increase attack complexity

•Consult internal/external embedded security experts
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To wrap up…



109

Takeaways



110

Takeaways

•Devices (incl. AUTOSAR-based ECUs) will be hacked



111

Takeaways

•Devices (incl. AUTOSAR-based ECUs) will be hacked

•Not AUTOSAR’s fault!



112

Takeaways

•Devices (incl. AUTOSAR-based ECUs) will be hacked

•Not AUTOSAR’s fault!

•No (known) software vulnerabilities ≠ secure



113

Takeaways

•Devices (incl. AUTOSAR-based ECUs) will be hacked

•Not AUTOSAR’s fault!

•No (known) software vulnerabilities ≠ secure

•Hardware attacks are efficient and do scale
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Thank you. Questions?

Niek Timmers

niek@riscure.com / @tieknimmers

mailto:niek@riscure.com
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Challenge your security

Riscure B.V. 

Frontier Building, Delftechpark 49 

2628 XJ Delft 

The Netherlands 

Phone: +31 15 251 40 90 

inforequest@riscure.com

Riscure North America 

550 Kearny St., Suite 330

San Francisco, CA 94108 USA

Phone: +1 650 646 99 79 

inforequest@riscure.com

Riscure China

Room 2030-31, No. 989, Changle Road, Shanghai 200031

China

Phone: +86 21 5117 5435

inforcn@riscure.com

mailto:inforequest@riscure.com
mailto:inforequest@riscure.com
mailto:inforcn@riscure.com

