
Using Fault Injection to Turn Data
Transfers into Arbitrary Execution

Niek Timmers

niek@twentytwosecurity.com

@tieknimmers

Cristofaro Mune

c.mune@pulse-sec.com

@pulsoid

mailto:niek@twentytwosecurity.com
https://twitter.com/tieknimmers
mailto:c.mune@pulse-sec.com
https://twitter.com/pulsoid

Today’s agenda

• Introduction

• Fault Injection basics

• Fault models and attacks

• Previous research:

• From data transfer to arbitrary execution on ARM (AArch32)

• New research:

• Generalizing the attack technique to other architectures

• New techniques, attack simulations and demos

• Takeaways

• Cristofaro Mune

• Product Security Consultant

• Security trainer

• Research:

• Fault injection

• TEEs

• White-box Cryptography

• Device exploitation

• Niek Timmers

• Freelance Device Security Expert

• Security trainer

• Interests:

• Secure boot

• Fault injection

• Low-level software

• Fuzzing

Who are we…

FAULT INJECTION BASICS

Awesome! But… how can these faults be introduced?

Fault injection

“Introducing faults into a chip to alter its intended behavior.”

// check if secure boot is enabled
if(SECURE_BOOT_EN == 1) {

authenticate(&image);
}

// execute the image
execute(&image);

// check if secure boot is enabled
if(SECURE_BOOT_EN == 1) {

authenticate(&image);
}

// execute the image
execute(&image);

Fault injection techniques

3.3 V

Clock

Time

4.0 V

1.0 V

Voltage Clock

What goes wrong because of these glitches?

Fault injection techniques

Voltage Clock Electromagnetic Laser

GOOD QUESTION; DIFFICULT ANSWER

Fault injection reference model

Faults

FI technique

Injection

Clock

EM

…

Voltage

Activation

Software

• CLKSCREW

• Rowhammer

Hardware

• FI tooling

Glitch parameters

Glitch Exploit

HW Vulnerability

Target

Fault model

Goal

“Control” “Inject” “Glitch”

“Selecting specific faults”

“Execute” “Achieve”“Introduce”

Just the typical ones…

Fault models

• Instruction skipping

• E.g. bypassing a check by not executing a critical instruction

• Data corruption

• E.g. recovering a key by corrupting cryptographic primitives

• Instruction corruption

• Very powerful, we will cover this later on…

Typical fault attacks

• Breaking crypto wallets

• Hacking smart phones

• Bypassing secure boot

• Recovering keys from crypto engines

WE HAVE ATTACKS UP OUR SLEEVE AS WELL ☺

Arbitrary execution using fault injection

• One of the first examples where instruction corruption is described

• Introduces powerful attack: PC control on AArch32

We decided to use this to devise powerful attacks…

Instruction corruption

• Glitches are used to corrupt instructions

• Single bit corruptions

• Multi bit corruptions

• Most chips are affected by this fault model

• Which bits can be controlled, and how, depends on the target, …

• As software is modified; any software security model breaks

add x0, x1, x3 = 10001011000000110000000000100000
add x0, x1, x2 = 10001011000000100000000000100000

ldr x0, [sp, #32] = 11111001010000000001001111100000
str x0, [x0, #32] = 11111001000000000001000000000000

TURNING DATA TRANSFERS INTO ARBITRARY EXECUTION

• All devices transfer data

• From memory to memory

• Using external interfaces

Data transfers are a great target

Transferring data is fundamental for devices!

USB

UART

ETH

ROM

SRAM

Flash DDR

CPU

GSM RF

Let’s use it as a Fault Injection target…

Fault injection target: memcpy

• It’s everywhere.

• Parameters are typically checked (dest, src and n)

• Data itself often not considered security critical

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b10078 ldm r1!, {r3, r4, r5, r6}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32

10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b10078 ldm r1!, {r3, r4, r5, r6}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32

10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b18078 ldm r1!, {r3, r4, r5, r6, pc}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32

10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

Control flow is directly hijacked using an 1 bit fault!

Attack description

Interface

(USB)

Input

buffer

Command

buffer

Command

handler

Output

buffer

Attack summary

• Corrupt instruction

• Modify load instruction operands (destination register)

• Directly addressable PC is set to attacker controlled value

We used this technique for different attacks

• Escalating privileges from user to kernel in Linux

• R00ting the Unexploitable using Hardware Fault Injection @ BlueHat v17

• Bypassing encrypted secure boot

• Hardening Secure Boot on Embedded Devices @ Blue Hat IL 2019

• Taking control of an AUTOSAR based ECU

• Attacking AUTOSAR using Software and Hardware Attacks @ escar USA 2019

https://www.slideshare.net/MSbluehat/kernelfault-r00ting-the-unexploitable-using-hardware-fault-injection
https://www.slideshare.net/CristofaroMune/blue-hat-il-2019-hardening-secure-boot-on-embedded-devices-for-hostile-environments
https://pure.tugraz.at/ws/portalfiles/portal/23511745/Attacking_AUTOSAR_using_Software_and_Hardware_Attacks.pdf

BUT… AARCH32 SPECIFIC!NICE!

Our new research

• Generalize turning data transfers into code execution using FI

• Identify techniques that apply to all architectures (e.g. ARMv8)

Present in all architectures and systems!

We focus on…

• Software that transfers attacker controlled data

• Instructions that affect control flow:

• Jumps (JMP, JX, etc.)

• Calls (BL, CALL, etc.)

• Returns (RET, etc.)

• Exception returns (ERET, etc.)

• …

TECHNIQUE 42:
EPILOGUE: ‘RET’ CORRUPTION

How do we attack?

The RET instruction

• We are talking here about RET on ARMv8

• It has the following encoding:

• Interestingly, the RET instruction can encode any register (x0 to x30)

Real world example

• Let’s have a look at Google Bionic’s (LIBC) memcpy

• Optimized memcpy uses different code based on length

• Copying 16 bytes executes the following code:

• Source data resides in x6 and x7

• Source data is not wiped before RET

• Glitch RET into RET x6 or RET x7

memcpy:
add srcend, src, count
add dstend, dstin, count
cmp count, 16
b.ls L(copy16)
...
cmp count, 8
b.lo 1f
ldr A_l, [src]
ldr A_h, [srcend, -8]
str A_l, [dstin]
str A_h, [dstend, -8]
ret

memcpy:
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50

...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

memcpy:
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50

...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

memcpy:
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50

...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

What kind of fault do we need? Good question…

Important: actual faults in a real target may be different!

Fault injection simulator

• Manually applying fault models is tedious; we need automation

• We assume various faults at the instruction level

• Bit flips: 1, 2, 3 and 4 (Flip{x})

• Bits to zero: 1, 2, 3 and 4 (BiZe{x})

• Bytes to zero: 1, 2, and 4 (ByZe{x})

Compile code Emulate code Inject faults Log results

The simulator seems to be effective!

Fault injection attack simulation

• The following faults change RET into RET x6 or RET x7:

• Interestingly, the simulator also finds faults we did not think of:

PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (Flip2) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (ByZe1) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe4) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe2) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe3) 'ret ' is set to 'ret x6’

PC is set to 4141414141414141 when at 000008f8 260040f9 is set to 3e0040f9 (Flip2) 'ldr x6, [x1]' is set to 'ldr x30, [x1]'

PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (Flip2) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (ByZe1) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe4) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe2) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe3) 'ret ' is set to 'ret x6’

attack result

PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (Flip2) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (ByZe1) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe4) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe2) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe3) 'ret ' is set to 'ret x6’

attack result offset

PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (Flip2) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (ByZe1) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe4) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe2) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe3) 'ret ' is set to 'ret x6’

attack result offset BinIns BinIns

PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (Flip2) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (ByZe1) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe4) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe2) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe3) 'ret ' is set to 'ret x6’

attack result offset BinIns BinIns FM

PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (Flip2) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (ByZe1) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe4) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe2) 'ret ' is set to 'ret x6'
PC is set to 4141414141414141 when at 00000908 c0035fd6 is set to c0005fd6 (BiZe3) 'ret ' is set to 'ret x6’

attack result offset BinIns BinIns FM Ins Ins

Let’s explore some other avenues…

Observations

• Attack simulation helps identifying interesting faults

• Assuming corrupting a single bit is easier; likelihood depends upon:

• instruction encoding

• operands/registers that are used (by compiler and/or developer)

• Different type of faults can be used for successful attacks

TECHNIQUE 66:
‘CALL/JMP INSTRUCTION’ CORRUPTION

Used e.g. to call functions and function pointers!

CALL/JMP instructions

• All architectures have variants of CALL/JMP instructions

• We are interested in the variant that uses a register as an operand

• ARMv7: bx r0

• ARMv8: blr x0

• MIPS: jr $a0

• Xtensa: callx0 a4

• …

typedef struct Command {
unsigned int cmdid;
int(*function)(size_t arg1, size_t arg2, size_t arg3);

} Command;

typedef struct CommandIn {
unsigned int cmdid; size_t arg1; size_t arg2; size_t arg3;

} CommandIn;

const struct Command commands[] = { ... };

int command_loop() {
...
while(commands[i].cmdid != 0) {

if(commands[i].cmdid == cmd->cmdid) {
ret = (*commands[i].function)(cmd->arg1, cmd->arg2, cmd->arg3);

}
i++;

}
...

Attack example

• Simple command handler implemented using a function pointer

• The arguments are under control of the attackers

typedef struct Command {
unsigned int cmdid;
int(*function)(size_t arg1, size_t arg2, size_t arg3);

} Command;

typedef struct CommandIn {
unsigned int cmdid; size_t arg1; size_t arg2; size_t arg3;

} CommandIn;

const struct Command commands[] = { ... };

int command_loop() {
...
while(commands[i].cmdid != 0) {

if(commands[i].cmdid == cmd->cmdid) {
ret = (*commands[i].function)(cmd->arg1, cmd->arg2, cmd->arg3);

}
i++;

}
...

0000000000000010 <command_loop>:
10: a9be7bfd stp x29, x30, [sp, #-32]!
14: 52800400 mov w0, #0x20
18: 910003fd mov x29, sp
1c: a90153f3 stp x19, x20, [sp, #16]
20: 94000000 bl 0 <malloc_s>
24: 90000013 adrp x19, 0 <f1>
28: 91000273 add x19, x19, #0x0
2c: aa0003f4 mov x20, x0

<cut>
54: b9400282 ldr w2, [x20]
58: 6b01005f cmp w2, w1
5c: 540000c1 b.ne 74 <command_loop+0x64>
60: f9400263 ldr x3, [x19]
64: a9408680 ldp x0, x1, [x20, #8]
68: f9400e82 ldr x2, [x20, #24]
6c: d63f0060 blr x3
70: 93407c00 sxtw x0, w0
74: 91004273 add x19, x19, #0x10
78: 17fffff2 b 40 <command_loop+0x30>

0000000000000010 <command_loop>:
10: a9be7bfd stp x29, x30, [sp, #-32]!
14: 52800400 mov w0, #0x20
18: 910003fd mov x29, sp
1c: a90153f3 stp x19, x20, [sp, #16]
20: 94000000 bl 0 <malloc_s>
24: 90000013 adrp x19, 0 <f1>
28: 91000273 add x19, x19, #0x0
2c: aa0003f4 mov x20, x0

<cut>
54: b9400282 ldr w2, [x20]
58: 6b01005f cmp w2, w1
5c: 540000c1 b.ne 74 <command_loop+0x64>
60: f9400263 ldr x3, [x19]
64: a9408680 ldp x0, x1, [x20, #8]
68: f9400e82 ldr x2, [x20, #24]
6c: d63f0060 blr x3
70: 93407c00 sxtw x0, w0
74: 91004273 add x19, x19, #0x10
78: 17fffff2 b 40 <command_loop+0x30>

Attack example

• The function call is performed using a blr instruction

• The attacker’s goal is to change x3 into x0, x1 or x2

typedef struct Command {
unsigned int cmdid;
int(*function)(size_t arg1, size_t arg2, size_t arg3);

} Command;

typedef struct CommandIn {
unsigned int cmdid; size_t arg1; size_t arg2; size_t arg3;

} CommandIn;

const struct Command commands[] = { ... };

int command_loop() {
...
while(commands[i].cmdid != 0) {

if(commands[i].cmdid == cmd->cmdid) {
ret = (*commands[i].function)(cmd->arg1, cmd->arg2, cmd->arg3);

}
i++;

}
...

0000000000000010 <command_loop>:
10: a9be7bfd stp x29, x30, [sp, #-32]!
14: 52800400 mov w0, #0x20
18: 910003fd mov x29, sp
1c: a90153f3 stp x19, x20, [sp, #16]
20: 94000000 bl 0 <malloc_s>
24: 90000013 adrp x19, 0 <f1>
28: 91000273 add x19, x19, #0x0
2c: aa0003f4 mov x20, x0

<cut>
54: b9400282 ldr w2, [x20]
58: 6b01005f cmp w2, w1
5c: 540000c1 b.ne 74 <command_loop+0x64>
60: f9400263 ldr x3, [x19]
64: a9408680 ldp x0, x1, [x20, #8]
68: f9400e82 ldr x2, [x20, #24]
6c: d63f0060 blr x3
70: 93407c00 sxtw x0, w0
74: 91004273 add x19, x19, #0x10
78: 17fffff2 b 40 <command_loop+0x30>

0000000000000010 <command_loop>:
10: a9be7bfd stp x29, x30, [sp, #-32]!
14: 52800400 mov w0, #0x20
18: 910003fd mov x29, sp
1c: a90153f3 stp x19, x20, [sp, #16]
20: 94000000 bl 0 <malloc_s>
24: 90000013 adrp x19, 0 <f1>
28: 91000273 add x19, x19, #0x0
2c: aa0003f4 mov x20, x0

<cut>
54: b9400282 ldr w2, [x20]
58: 6b01005f cmp w2, w1
5c: 540000c1 b.ne 74 <command_loop+0x64>
60: f9400263 ldr x3, [x19]
64: a9408680 ldp x0, x1, [x20, #8]
68: f9400e82 ldr x2, [x20, #24]
6c: d63f0060 blr x0 // or x1 or x2
70: 93407c00 sxtw x0, w0
74: 91004273 add x19, x19, #0x10
78: 17fffff2 b 40 <command_loop+0x30>

typedef struct Command {
unsigned int cmdid;
int(*function)(size_t arg1, size_t arg2, size_t arg3);

} Command;

typedef struct CommandIn {
unsigned int cmdid; size_t arg1; size_t arg2; size_t arg3;

} CommandIn;

const struct Command commands[] = { ... };

int command_loop() {
...
while(commands[i].cmdid != 0) {

if(commands[i].cmdid == cmd->cmdid) {
ret = (*commands[i].function)(cmd->arg1, cmd->arg2, cmd->arg3);

}
i++;

}
...

Fault injection attack simulation

The following faults corrupt blr x3 to blr x0, blr x1 or blr x2:
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (Flip1) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (Flip1) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (Flip2) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (BiZe1) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (BiZe1) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (BiZe2) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (BiZe2) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (BiZe2) 'blr x3' is set to 'blr x0’
... <cut BiZe3 out>
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (BiZe4) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (BiZe4) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (BiZe4) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (ByZe1) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (ByZe2) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (Flip1) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (Flip1) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (Flip2) 'blr x3' is set to 'blr x0'

Different faults yield full PC control!

PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (Flip1) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (Flip1) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (Flip2) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (BiZe1) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (BiZe1) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (BiZe2) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (BiZe2) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (BiZe2) 'blr x3' is set to 'blr x0’
... <cut BiZe3 out>
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (BiZe4) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (BiZe4) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (BiZe4) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (ByZe1) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (ByZe2) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (Flip1) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (Flip1) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (Flip2) 'blr x3' is set to 'blr x0'

PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (Flip1) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (Flip1) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (Flip2) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (BiZe1) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (BiZe1) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (BiZe2) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (BiZe2) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (BiZe2) 'blr x3' is set to 'blr x0’
... <cut BiZe3 out>
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (BiZe4) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (BiZe4) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (BiZe4) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (ByZe1) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (ByZe2) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (Flip1) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (Flip1) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (Flip2) 'blr x3' is set to 'blr x0'

PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (Flip1) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (Flip1) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (Flip2) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (BiZe1) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (BiZe1) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (BiZe2) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (BiZe2) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (BiZe2) 'blr x3' is set to 'blr x0’
... <cut BiZe3 out>
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (BiZe4) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (BiZe4) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (BiZe4) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (ByZe1) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (ByZe2) 'blr x3' is set to 'blr x0'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 20003fd6 (Flip1) 'blr x3' is set to 'blr x1'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 40003fd6 (Flip1) 'blr x3' is set to 'blr x2'
PC is set to 4141414141414141 when at 00000620 60003fd6 is set to 00003fd6 (Flip2) 'blr x3' is set to 'blr x0'

FAULT INJECTION INTERMEZZO

• Our goal is to jump to an arbitrary location

• Xtensa LX6

• Program counter is not directly addressable

• Function pointers implemented using callx8

• Test program:

• Load address of normal() in register a7

• Load address of pwn() in all other registers

• Likelihood increased by using a callx8 sled

• Corrupt callx8 to use a different register

Demo of ‘CALL/JMP’ corruption on ESP32 (Xtensa)

Test is successful when pwn() gets executed!

asm volatile (

"movi a2, 0x400d1dc0;" // pwn() address
“movi a3, 0x400d1dc0;" // pwn() address
<cut init of registers>
"movi a14, 0x400d1dc0;" // pwn() address
"movi a15, 0x400d1dc0;" // pwn() address
"movi a7, 0x400d1da8;" // normal() address
"callx8 a7;"
“callx8 a7;"
“callx8 a7;"
<cut 10,000 callx8 instructions>
"callx8 a7;"
"callx8 a7;"
"callx8 a7;“
...
);

This demonstrates PC control is possible!

Demo summary

Using a glitch, we corrupted callx8’s operand to use a different register:

• Success rates:

• Success per experiment: ~5%

• Time per success: a few minutes

Observations

• Control flow redirected to arbitrary locations

• Code construct not realistic but sufficient for PoC (☺)

• An attacker would need to corrupt a specific instruction:

• Feasibility depends on lots of variable like the target, timing, technique, …

TECHNIQUE 43:
EPILOGUE : ‘REGISTER RESTORE’ CORRUPTION

Leftover data in registers

• Typical software does not wipe registers after being used

• Attacker controlled data may persist between callers and callees

• Leftover data can be very useful for attacks…

...
BL memcpy_s
CMP X0, #8
STR XZR, [SP, #0x30,+var_28]
LDR X8, [SP, #0x30,+var_28]
CBZ X8, loc_622C97C
MOV W1, #1
MOV X0, X20
MOV X2, X19
SUB SP, X29, #0x20
LDP X29, X30, [SP, #0x20+var_s0]
LDP X20, X19, [SP, #0x20+var_10]
LDP X22, X21, [SP, #0x20+var_20]
RET
; End of function calling memcpy_s

...
BL memcpy_s
CMP X0, #8
STR XZR, [SP, #0x30,+var_28]
LDR X8, [SP, #0x30,+var_28]
CBZ X8, loc_622C97C
MOV W1, #1
MOV X0, X20
MOV X2, X19
SUB SP, X29, #0x20
LDP X29, X30, [SP, #0x20+var_s0]
LDP X20, X19, [SP, #0x20+var_10]
LDP X22, X21, [SP, #0x20+var_20]
RET
; End of function calling memcpy_s

Where do we attack?

Attack example

• Extracted from a modern mobile phone’s bootloader

• Attacker controlled data is copied to internal memory

...
BL memcpy
MOV X0, X19
LDP X29, X30, [SP, #0x10]
LDP X20, X19, [SP], #0x20
RET
; End of function memcpy_s

...
LDR W10, [x8], #-4
STR W10, [x9], #-4
SUBS X2, X2, #4
B.NE loc_6219B38
RET
; End of function memcpy

...
BL memcpy
MOV X0, X19
LDP X29, X30, [SP, #0x10]
LDP X20, X19, [SP], #0x20
RET
; End of function memcpy_s

Attack example

• Always focus on the attacker controlled data

• Attacker controlled data (x10) is not clobbered by callee or callers

...
LDR W10, [x8], #-4
STR W10, [x9], #-4
SUBS X2, X2, #4
B.NE loc_6219B38
RET
; End of function memcpy

...
BL memcpy_s
CMP X0, #8
STR XZR, [SP, #0x30,+var_28]
LDR X8, [SP, #0x30,+var_28]
CBZ X8, loc_622C97C
MOV W1, #1
MOV X0, X20
MOV X2, X19
SUB SP, X29, #0x20
LDP X29, X30, [SP, #0x20+var_s0]
LDP X20, X19, [SP, #0x20+var_10]
LDP X22, X21, [SP, #0x20+var_20]
RET
; End of function calling memcpy_s

...
BL memcpy
MOV X0, X19
LDP X29, X30, [SP, #0x10]
LDP X20, X19, [SP], #0x20
RET
; End of function memcpy_s

...
BL memcpy
MOV X0, X19
LDP X29, X30, [SP, #0x10]
LDP X20, X19, [SP], #0x20
RET
; End of function memcpy_s

...
LDR W10, [x8], #-4
STR W10, [x9], #-4
SUBS X2, X2, #4
B.NE loc_6219B38
RET
; End of function memcpy

...
BL memcpy
MOV X0, X19
LDP X29, X30, [X10, #0x10]
LDP X20, X19, [SP], #0x20
RET
; End of function memcpy_s

...
BL memcpy_s
CMP X0, #8
STR XZR, [SP, #0x30,+var_28]
LDR X8, [SP, #0x30,+var_28]
CBZ X8, loc_622C97C
MOV W1, #1
MOV X0, X20
MOV X2, X19
SUB SP, X29, #0x20
LDP X29, X30, [SP, #0x20+var_s0]
LDP X20, X19, [SP, #0x20+var_10]
LDP X22, X21, [SP, #0x20+var_20]
RET
; End of function calling memcpy_s

Attack example

• Corrupt LDP to set X29 and X30 with attacker controlled data

• Set X30 to any function epilogue where X29 is used to restore SP
...
BL memcpy_s
CMP X0, #8
STR XZR, [SP, #0x30,+var_28]
LDR X8, [SP, #0x30,+var_28]
CBZ X8, loc_622C97C
MOV W1, #1
MOV X0, X20
MOV X2, X19
SUB SP, X29, #0x20
LDP X29, X30, [SP, #0x20+var_s0]
LDP X20, X19, [SP, #0x20+var_10]
LDP X22, X21, [SP, #0x20+var_20]
RET
; End of function calling memcpy_s

...
LDR W10, [x8], #-4
STR W10, [x9], #-4
SUBS X2, X2, #4
B.NE loc_6219B38
RET
; End of function memcpy

Now we control PC and SP…

...
BL memcpy
MOV X0, X19
LDP X29, X30, [SP, #0x10]
LDP X20, X19, [SP], #0x20
RET
; End of function memcpy_s

Attack simulation

• The following faults corrupt ldp x29, x30, [sp, #0x10] to use x10:

• Our assumed fault models… do not make it possible :

• No pattern for changing SP (X31) into X10

• Attacks may still be possible in real targets, when:

• Leftover data in different registers

• Different fault models apply

Let’s simulate it…

What if leftover data is in other registers than x10?

Success may depend on which registers are used!

x29 and x30 set when at 00000690 fd7b41a9 is fd7841a9 (BiZe2) 'ldp x29, x30, [sp, #0x10]' >> 'ldp x29, x30, [x7, #0x10]'
x29 and x30 set when at 00000690 fd7b41a9 is fd7941a9 (BiZe1) 'ldp x29, x30, [sp, #0x10]' >> 'ldp x29, x30, [x15, #0x10]'
x29 and x30 set when at 00000690 fd7b41a9 is fd7a41a9 (BiZe1) 'ldp x29, x30, [sp, #0x10]' >> 'ldp x29, x30, [x23, #0x10]'
x29 and x30 set when at 00000690 fd7b41a9 is 3d7b41a9 (BiZe2) 'ldp x29, x30, [sp, #0x10]' >> 'ldp x29, x30, [x25, #0x10]'
x29 and x30 set when at 00000690 fd7b41a9 is 7d7b41a9 (BiZe1) 'ldp x29, x30, [sp, #0x10]' >> 'ldp x29, x30, [x27, #0x10]'
x29 and x30 set when at 00000690 fd7b41a9 is 9d7b41a9 (BiZe2) 'ldp x29, x30, [sp, #0x10]' >> 'ldp x29, x30, [x28, #0x10]'
x29 and x30 set when at 00000690 fd7b41a9 is bd7b41a9 (BiZe1) 'ldp x29, x30, [sp, #0x10]' >> 'ldp x29, x30, [x29, #0x10]'

Attack summary

• Using a single bit fault we control x29, x30, SP and PC

• But only if leftover data is in the ‘right’ registers…

• Perfect start for doing things like Return-Oriented-Programming (ROP)

• Very powerful when successful…

TECHNIQUE 67:
‘POINTER REGISTER’ CORRUPTION

typedef struct Command {
unsigned int cmdid;
int(*function)(size_t arg1, size_t arg2, size_t arg3);

} Command;

typedef struct CommandIn {
unsigned int cmdid; size_t arg1; size_t arg2; size_t arg3;

} CommandIn;

const struct Command commands[] = { ... };

int command_loop() {
...
while(commands[i].cmdid != 0) {

if(commands[i].cmdid == cmd->cmdid) {
ret = (*commands[i].function)(cmd->arg1, cmd->arg2, cmd->arg3);

}
i++;

}
...

Attack example

• Remember our simple command handler?

• With the arguments under control of an attacker…

typedef struct Command {
unsigned int cmdid;
int(*function)(size_t arg1, size_t arg2, size_t arg3);

} Command;

typedef struct CommandIn {
unsigned int cmdid; size_t arg1; size_t arg2; size_t arg3;

} CommandIn;

const struct Command commands[] = { ... };

int command_loop() {
...
while(commands[i].cmdid != 0) {

if(commands[i].cmdid == cmd->cmdid) {
ret = (*commands[i].function)(cmd->arg1, cmd->arg2, cmd->arg3);

}
i++;

}
...

0000000000000010 <command_loop>:
10: a9be7bfd stp x29, x30, [sp, #-32]!
14: 52800400 mov w0, #0x20
18: 910003fd mov x29, sp
1c: a90153f3 stp x19, x20, [sp, #16]
20: 94000000 bl 0 <malloc_s>
24: 90000013 adrp x19, 0 <f1>
28: 91000273 add x19, x19, #0x0
2c: aa0003f4 mov x20, x0

<cut>
54: b9400282 ldr w2, [x20]
58: 6b01005f cmp w2, w1
5c: 540000c1 b.ne 74 <command_loop+0x64>
60: f9400263 ldr x3, [x19]
64: a9408680 ldp x0, x1, [x20, #8]
68: f9400e82 ldr x2, [x20, #24]
6c: d63f0060 blr x3
70: 93407c00 sxtw x0, w0
74: 91004273 add x19, x19, #0x10
78: 17fffff2 b 40 <command_loop+0x30>

0000000000000010 <command_loop>:
10: a9be7bfd stp x29, x30, [sp, #-32]!
14: 52800400 mov w0, #0x20
18: 910003fd mov x29, sp
1c: a90153f3 stp x19, x20, [sp, #16]
20: 94000000 bl 0 <malloc_s>
24: 90000013 adrp x19, 0 <f1>
28: 91000273 add x19, x19, #0x0
2c: aa0003f4 mov x20, x0

<cut>
54: b9400282 ldr w2, [x20]
58: 6b01005f cmp w2, w1
5c: 540000c1 b.ne 74 <command_loop+0x64>
60: f9400263 ldr x3, [x19]
64: a9408680 ldp x0, x1, [x20, #8]
68: f9400e82 ldr x2, [x20, #24]
6c: d63f0060 blr x3
70: 93407c00 sxtw x0, w0
74: 91004273 add x19, x19, #0x10
78: 17fffff2 b 40 <command_loop+0x30>

typedef struct Command {
unsigned int cmdid;
int(*function)(size_t arg1, size_t arg2, size_t arg3);

} Command;

typedef struct CommandIn {
unsigned int cmdid; size_t arg1; size_t arg2; size_t arg3;

} CommandIn;

const struct Command commands[] = { ... };

int command_loop() {
...
while(commands[i].cmdid != 0) {

if(commands[i].cmdid == cmd->cmdid) {
ret = (*commands[i].function)(cmd->arg1, cmd->arg2, cmd->arg3);

}
i++;

}
...

typedef struct Command {
unsigned int cmdid;
int(*function)(size_t arg1, size_t arg2, size_t arg3);

} Command;

typedef struct CommandIn {
unsigned int cmdid; size_t arg1; size_t arg2; size_t arg3;

} CommandIn;

const struct Command commands[] = { ... };

int command_loop() {
...
while(commands[i].cmdid != 0) {

if(commands[i].cmdid == cmd->cmdid) {
ret = (*commands[i].function)(cmd->arg1, cmd->arg2, cmd->arg3);

}
i++;

}
...

0000000000000010 <command_loop>:
10: a9be7bfd stp x29, x30, [sp, #-32]!
14: 52800400 mov w0, #0x20
18: 910003fd mov x29, sp
1c: a90153f3 stp x19, x20, [sp, #16]
20: 94000000 bl 0 <malloc_s>
24: 90000013 adrp x19, 0 <f1>
28: 91000273 add x19, x19, #0x0
2c: aa0003f4 mov x20, x0

<cut>
54: b9400282 ldr w2, [x20]
58: 6b01005f cmp w2, w1
5c: 540000c1 b.ne 74 <command_loop+0x64>
60: f9400263 ldr x3, [x19]
64: a9408680 ldp x0, x1, [x20, #8]
68: f9400e82 ldr x2, [x20, #24]
6c: d63f0060 blr x3
70: 93407c00 sxtw x0, w0
74: 91004273 add x19, x19, #0x10
78: 17fffff2 b 40 <command_loop+0x30>

0000000000000010 <command_loop>:
10: a9be7bfd stp x29, x30, [sp, #-32]!
14: 52800400 mov w0, #0x20
18: 910003fd mov x29, sp
1c: a90153f3 stp x19, x20, [sp, #16]
20: 94000000 bl 0 <malloc_s>
24: 90000013 adrp x19, 0 <f1>
28: 91000273 add x19, x19, #0x0
2c: aa0003f4 mov x20, x0

<cut>
54: b9400282 ldr w2, [x20]
58: 6b01005f cmp w2, w1
5c: 540000c1 b.ne 74 <command_loop+0x64>
60: f9400263 ldr x3, [x19]
64: a9408680 ldp x3, x3, [x20, #8]
68: f9400e82 ldr x3, [x20, #24]
6c: d63f0060 blr x3
70: 93407c00 sxtw x0, w0
74: 91004273 add x19, x19, #0x10
78: 17fffff2 b 40 <command_loop+0x30>

Attack example

• Another attack targets the ldr instructions setting the arguments

• Attack goal is to load an argument in x3 instead of x0, x1 or x2

Fault injection attack simulation

The following faults corrupt ldp or ldr to use x3 as the destination:

PC is 4141414141414141 when at 00000618 808640a9 is 838640a9 (Flip2) 'ldp x0, x1, [x20, #8]' is set to 'ldp x3, x1, [x20, #8]'
PC is 4141414141414141 when at 00000618 808640a9 is 808e40a9 (Flip3) 'ldp x0, x1, [x20, #8]' is set to 'ldp x0, x3, [x20, #8]’
PC is 4141414141414141 when at 0000061c 820e40f9 is 830e40f9 (Flip1) 'ldr x2, [x20, #0x18]' is set to 'ldr x3, [x20, #0x18]'

However…

An interesting observation…

• Compiled instructions depend on argument type

• Compiler uses 32-bit (w0) register addressing instead of 64-bit (x0)

typedef struct Command {
unsigned int cmdid;
int(*function)(size_t arg1, size_t arg2, size_t arg3);

} Command;

typedef struct CommandIn {
unsigned int cmdid; size_t arg1; size_t arg2; size_t arg3;

} CommandIn;

const struct Command commands[] = { ... };

int command_loop() {
...
while(commands[i].cmdid != 0) {

if(commands[i].cmdid == cmd->cmdid) {
ret = (*commands[i].function)(cmd->arg1, cmd->arg2, cmd->arg3);

}
i++;

}
...

typedef struct Command {
unsigned int cmdid;
int(*function)(uint32_t arg1, uint32_t arg2, uint32_t arg3);

} Command;

typedef struct CommandIn {
unsigned int cmdid; uint32_t arg1; uint32_t arg2; uint32_t arg3;

} CommandIn;

const struct Command commands[] = { ... };

int command_loop() {
...
while(commands[i].cmdid != 0) {

if(commands[i].cmdid == cmd->cmdid) {
ret = (*commands[i].function)(cmd->arg1, cmd->arg2, cmd->arg3);

}
i++;

}
...

0000000000000010 <command_loop>:
10: a9be7bfd stp x29, x30, [sp, #-32]!
14: 52800400 mov w0, #0x20
18: 910003fd mov x29, sp
1c: a90153f3 stp x19, x20, [sp, #16]
20: 94000000 bl 0 <malloc_s>
24: 90000013 adrp x19, 0 <f1>
28: 91000273 add x19, x19, #0x0
2c: aa0003f4 mov x20, x0

<cut>
54: b9400282 ldr w2, [x20]
58: 6b01005f cmp w2, w1
5c: 540000c1 b.ne 74 <command_loop+0x64>
60: f9400263 ldr x3, [x19]
64: a9408680 ldp w0, w1, [x20, #4]
68: f9400e82 ldr w2, [x20, #12]
6c: d63f0060 blr x3
70: 93407c00 sxtw x0, w0
74: 91004273 add x19, x19, #0x10
78: 17fffff2 b 40 <command_loop+0x30>

PC is 0000000041414141 when at 00000618 80864029 is 83864029 (flip2) 'ldp w0, w1, [x20, #4]’ is 'ldp w3, w1, [x20, #4]'
PC is 0000000041414141 when at 0000061c 820e40b9 is 830e40b9 (flip1) 'ldr w2, [x20, #0xc]’ is 'ldr w3, [x20, #0xc]'
PC is 0000000041414141 when at 00000618 80864029 is 808e4029 (flip1) 'ldp w0, w1, [x20, #4]' is 'ldp w0, w3, [x20, #4]'

PC is 0000000041414141 when at 00000618 80864029 is 83864029 (flip2) 'ldp w0, w1, [x20, #4]’ is 'ldp w3, w1, [x20, #4]'
PC is 0000000041414141 when at 0000061c 820e40b9 is 830e40b9 (flip1) 'ldr w2, [x20, #0xc]’ is 'ldr w3, [x20, #0xc]'
PC is 0000000041414141 when at 00000618 80864029 is 808e4029 (flip1) 'ldp w0, w1, [x20, #4]' is 'ldp w0, w3, [x20, #4]'

Fault injection attack simulation

The following faults corrupt ldp or ldr to use w3 as the destination:

Unfortunately, PC control is only partial…

Get full PC control by corrupting only 1 bit to zero!

But…

How many bits difference between:

ldr w2, [x20, #12] and ldp x2, x3, [x20] ?

PC is 4141414141414141 when at 0000061c 820e40b9 is 820e40a9 (BiZe1) 'ldr w2, [x20, #0xc]' is 'ldp x2, x3, [x20]'PC is 4141414141414141 when at 0000061c 820e40b9 is 820e40a9 (BiZe1) 'ldr w2, [x20, #0xc]' is 'ldp x2, x3, [x20]'

LET’S WRAP UP…

Takeaways

• Data transfers are great FI targets

• Used in all systems and devices

• They may operate on attacker controlled data

• Transferred data itself is relevant for FI attacks

• Typically not considered security critical for software attacks

• Data transfers may yield code execution using FI on all architectures

Thank you!

Niek Timmers

niek@twentytwosecurity.com

@tieknimmers

Cristofaro Mune

c.mune@pulse-sec.com

@pulsoid

Feel free to contact us!

mailto:niek@twentytwosecurity.com
https://twitter.com/tieknimmers
mailto:c.mune@pulse-sec.com
https://twitter.com/pulsoid

